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Abstract This paper investigates anti-synchronization control of memristive neural net-
works with multiple proportional delays. Here, we first study the proportional delay, which
is a kind of unbounded time-varying delay in the memristive neural networks, by using the
differential inclusion theory to handle the memristive neural networks with discontinuous
right-hand side. In particular, several new criteria ensuring anti-synchronization of memris-
tive neural networks with multiple proportional delays are presented. In addition, the new
proposed criteria are easy to verify and less conservative than earlier publications about anti-
synchronization control of memristive neural networks. Finally, two numerical examples are
given to show the effectiveness of our results.

Keywords Memristive neural networks · Proportional delay · Anti-synchronization

1 Introduction

Recently, memristor-based neural networks have been designed by replacing the resistors in
the primitive neural networks with memristors due to the memristor-based neural networks
are well suited to characterize the nonvolatile feature of thememory cell because of hysteresis
effects, just as the neurons in the human brain have [1–7]. The memristive neural networks
can remember its past dynamical history, store a continuous set of states, and be “plastic”
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according to the presynaptic and postsynaptic neuronal activity. Because of this feature,
the studies of memristive neural networks would benefit a lot of applications in associative
memories [1], new classes of artificial neural systems [2–7], etc.

In addition, anti-synchronization control of neural networks [8,9] play important roles in
many potential applications, e.g., non-volatile memories, neuromorphic devices to simulate
learning, adaptive and spontaneous behavior. Moreover, the anti-synchronization analysis for
memristive neural networks can provide a designer with an exciting variety of properties,
richness of flexibility, and opportunities [10]. Therefore, the problem of anti-synchronization
control of memristive neural networks is an important area of study.

Moreover, many researchers are concentrated on the dynamical nature of memristor with
constant time delays [2,3], time-varying delays [6], distributed delays or bounded time-
varying delays [11]. And in [12], authors researched the mixed delays, which contain the
time-varying discrete delays and unbounded distributed delays. While, proportional delay is
a time-varying delay with time proportional which is unbounded and different from the above
types of delays. Proportional delay is one of many delay types and if object exists, such as
in Web quality of service (QoS) routing decision proportional delay usually is required. The
proportional delay system as an important mathematical model often rises in some fields such
as physics, biology systems and control theory and it has attracted many scholars’ interest
[13–18]. To the best of the authors’ knowledge, few researchers have considered dynamical
behavior for the anti-synchronization control of memristive neural networks with multiple
proportional delays.

Motivated by the above discussions, in this paper, our aim is to shorten thus gap by
making an attempt to deal with the anti-synchronization problem for memristive neural
networks with proportional delays. The main advantage of this paper lies in the following
aspects. Firstly, we study proportional delays of memristive neural networks for the first time.
Secondly, anti-synchronization control criteria of memristive neural networks complement
and extend earlier publications. Lastly, by using the concept of Filippov solutions for the
differential equations with discontinuous right-hand sides and differential inclusions theory,
some new criteria are derived to ensure anti-synchronization of memristive neural networks
withmultiple proportional delays, and the proposed criteria are very easy to verify and achieve
a valuable improvement the easier published results.

2 Preliminaries

In this paper, solutions of all the systems considered in the following are intended in Filippov’s
sense. co{ξ̂ , ξ̌} denotes closure of the convex hull generated by ξ̂ and ξ̌ . [·, ·] represents an
interval. For a continuous function k(t) : R → R, D+k(t) is called the upper right Dini
derivative and defined as D+k(t) = limh→0+ 1

h (k(t + h) − k(t)).
Hopfield neural network model can be implemented in a circuit where the self-feedback

connection weights and the connection weights are implemented by resistors. In [10,19]
authors use memristors instead of resistors to build the memristive Hopfield neural network
model, where the time-varying delays are bounded. In the following, we describe a general
class of memristive Hopfield neural networks with multiple proportional delays where the
delays are unbounded:

ẋi (t) = −xi (t) + ∑n
j=1 ai j (xi (t)) f j (x j (t)) + ∑n

j=1 bi j (xi (t)) f j (x j (qi j t)),

i = 1, 2, . . . , n, (1)
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where

ai j (xi (t)) = Mi j

Ci
× sgini j ,

bi j (xi (t)) = Wi j

Ci
× sgini j ,

and

sgini j =
{

1, i �= j,
−1, i = j.

Mi j and Wi j denote the memductances of memristor Ri j and R̂i j , respectively. And Ri j

represents the memristor between the neuron activation function f j (x j (t)) and xi (t). R̂i j

represents the memristor between the neuron activation functions f j (x j (qi j t)) and xi (t).
ai j (xi (t)) and bi j (xi (t)) represent memristors synaptic connection weights, which denote the
strength of connectivity between the neuron j and i at time t and qi j (t); qi j (t) is a proportional
delay factor and satisfying qi j (t) = t−(1−qi j )t , in which (1−qi j )t corresponds to the time
delay required in processing and transmitting a signal from the j th neuron to the i th neuron.
The capacitor Ci is constant, the memductances Mi j and Wi j respond to changes in pinched
hysteresis loops. So ai j (xi (t)) and bi j (xi (t)) will change, as the pinched hysteresis loops
change. According to the feature of the memristor and the current-voltage characteristic,
then

ai j (xi (t) =
{
âi j , | xi (t) |≤ T,

ǎi j , | xi (t) |> T,

bi j (xi (t) =
{
b̂i j , | xi (t) |≤ T,

b̌i j , | xi (t) |> T,

in which the switching jump T > 0 and âi j , ǎi j , b̂i j and b̌i j are constants, and āi j =
max{âi j , ǎi j }, ai j = min{âi j , ǎi j }, b̄i j = max{b̂i j , b̌i j }, bi j = min{b̂i j , b̌i j }.

We give some definitions and assumptions which will be used in the following:

Definition 1 Suppose E ⊆ R
n , then x → F(x) is called a set-valued map from E → R

n ,
if for each point xεE , there exists a nonempty set F(x) ⊆ R

n . A set-valued map F with
nonempty values is said to be upper semicontinuous at x0εE , if for any open set N containing
F(x0), there exists a neighborhood M of x0 such that F(M) ⊆ N . The map F(x) is said to
have a closed (convex, compact) image if for each xεE, F(x) is closed (convex, compact).

Definition 2 (See [20]) For the system ẋ(t) = g(x), xεRn , with discontinuous right-hand
sides, a set-valued map is defined as

G(t, x) =
⋂

δ>0

⋂

μ(N )=0

co[g(B(x, δ) \ N )],

where co[E] is the closure of the convex hull of set E , B(x, δ) = {y : ‖y − x‖ ≤ δ} and
μ(N ) is the Lebesgue measure of the set N . A solution in the Filippov’s sense of the Cauchy
problem for this system with initial condition x(0) = x0 is an absolutely continuous function
x(t), which satisfies x(0) = x0 and the differential inclusion

ẋ(t)εG(t, x).
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Assumption 1 The function fi is an odd function and bounded, and satisfies a Lipschitz
condition with a Lipschitz constant Li , i.e.,

| fi (x) − fi (y) |≤ Li | x − y |,

for all x, yεR.

Assumption 2 For i, j = 1, 2, . . . , n,

co{âi j , ǎi j } f j (x j (t)) + co{âi j , ǎi j } f j (y j (t))
⊆ co{âi j , ǎi j }( f j (x j (t)) + f j (y j (t))),

co{b̂i j , b̌i j } f j (x j (t)) + co{b̂i j , b̌i j } f j (y j (t))
⊆ co{b̂i j , b̌i j }( f j (x j (t)) + f j (y j (t))).

The system (1) is a differential equation with discontinuous right-hand sides, and based
on the theory of differential inclusion, if xi (t) is a solution of (1) in the sense of Filippov,
then system (1) can be modified by the following stochastic neural networks

dxi (t)ε

[

−xi (t) + ∑n
j=1 co{ai j (xi (t))} f j (x j (t)) + ∑n

j=1 co{bi j (xi (t))} f j (x j (qi j t))
]

dt,

t ≥ 0, i = 1, 2, . . . , n, (2)

or equivalently, there exist ai j (t)εco{ai j (xi (t))} and bi j (t) εco(bi j (xi (t))), such that

dxi (t) =
[

−xi (t) + ∑n
j=1 ai j (t) f j (x j (t)) + ∑n

j=1 bi j (t) f j (x j (qi j t))

]

dt,

t ≥ 0, i = 1, 2, . . . , n. (3)

Lemma 1 If Assumption 1 holds, then there is at least a local solution x(t) of system (1),
and the local solution x(t) can be extended to the interval [0,+∞] in the sense of Filippov.

In this paper, we consider system (2) or (3) as the drive system and the corresponding
response system is:

dyi (t)ε

[

−yi (t) + ∑n
j=1 co{ai j (yi (t))} f j (y j (t)) + ∑n

j=1 co{bi j (yi (t))} f j (y j (qi j t))
]

dt,

t ≥ 0, i = 1, 2, . . . , n, (4)

or equivalently, there exist ai j (t)εco{ai j (yi (t))} and bi j (t) εco(bi j (yi (t))), such that

dyi (t) =
[

−yi (t) + ∑n
j=1 ai j (t) f j (y j (t)) + ∑n

j=1 bi j (t) f j (y j (qi j t))

]

dt,

t ≥ 0, i = 1, 2, . . . , n. (5)

Let e(t) = (e1(t), e2(t), . . . , en(t))T be the anti-synchronization error, where ei (t) = xi (t)+
yi (t). According to Assumption 2, by using the theories of set-valued maps and differential
inclusions, then we get the anti-synchronization error system as follows

123



Anti-synchronization Control of Memristive Neural Networks... 273

dei (t)ε

[

−ei (t) + ∑n
j=1 co{ai j (ei (t))}Fj (e j (t)) + ∑n

j=1 co{bi j (ei (t))}Fj (e j (qi j t))

]

dt,

t ≥ 0, i = 1, 2, . . . , n, (6)

or equivalently, there exist ai j (t)εco{ai j (ei (t))} and bi j (t) εco(bi j (ei (t))), such that

dei (t) =
[

−ei (t) + ∑n
j=1 ai j (t)Fj (e j (t)) + ∑n

j=1 bi j (t)Fj (e j (qi j t))

]

dt,

t ≥ 0, i = 1, 2, . . . , n, (7)

where Fj (e j (t)) = f j (x j (t)) + f j (y j (t)), Fj (qi j (t)) = f j (x j (qi j t)) + f j (y j (qi j t)).

Remark 1 The model of memristive neural networks with multi-proportional delays in (6)
or (7) is different from the neural networks with multi-proportional delays in [13–18], so that
those stability results cannot be directly applied to it.

Remark 2 The Eq. (7) is a discontinuous system with proportional delays, but the propor-
tional delays can be transferred into the common time-varying delays, so the discontinuous
system (7) with proportional delays exist local solution. The proof is similar to the proof
of the local existence theorem for Filippov solution in [20] and similar to the proof of the
Theorem 6 in Ref. [21], so it is omitted here.

Remark 3 According to Assumption 1, the activation functions f j are odd functions. Then
we get Fi (ei (t)) possesses the following properties:

| Fi (ei (t)) | ≤ Li | ei (t) |, (8)

and

Fi (0) = fi (xi (t)) + fi (−xi (t)) = 0, i = 1, 2, . . . , n. (9)

We transform system (7) by

zi (t) = ei (e
t ), i = 1, 2, . . . , n, (10)

then we get the following system (see [16–18])

żi (t) = et
{

− zi (t) +
n∑

j=1

ai j (t)Fj (z j (t)) +
n∑

j=1

bi j (t)Fj (z j (t − τi j ))
}
, (11)

where τi j = − log qi j ≥ 0, τ = max1≤i, j≤n{τi j }.

3 Main Results

In this section, two anti-synchronization criteria are given under designed controllers for
memristive neural networks with proportional delays.

Theorem 1 If there exist positive diagonal matrices P = diag{P1, P2, . . . , Pn}, K =
diag{k1, k2, . . . , kn}, Ni = diag{ni1, ni2, . . . , nin} and a constant r > 0, such that the
following inequality holds:

−2PL−1 − 2PK L−1 + P Ā + ĀT P

+ r−1
n∑

i=1

PWi N
−1
i W−1

i P + r Ni Q
−1
i < 0, (12)
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whereWi is an n×n squarematrix, whose i th row is composed of (bi1, bi2, . . . , bin) and other
rows are zeros, i = 1, 2, . . . , n, and Q−1

i = diag
(
q−1
i1 , q−1

i2 , . . . , q−1
in

)
, i = 1, 2, . . . , n.

L = diag(L1, L2, . . . , Ln), Ā = (āi j )n×n, then the drive system and the response system
become anti-synchronized under the controller ui (t),

ui (t) = −ki (yi (t) + xi (t)), i = 1, 2 . . . , n. (13)

Proof The error system (7) under the controller (13) can be described by

dei (t) =
[

−ei (t) + ∑n
j=1 ai j (t)Fj (e j (t)) + ∑n

j=1 bi j (t)Fj (e j (qi j t)) − ki ei (t)

]

dt,

t ≥ 0, i = 1, 2, . . . , n. (14)

Construct the following Lyapunov functional:

V (e(t)) =
n∑

i=1

2Pi

∫ ei (t)

0
Fi (s)ds +

n∑

i=1

n∑

j=1

r

qi j

∫ t

qi j t
ni j F

2
j (e j (s))ds, (15)

where Pi > 0, ni j > 0, and r > 0.
According to (8), we get

F2
i (ei (·)) ≤ Li ei (·) · Fi (ei (·)). (16)

In (15), by (16), if e(t) = (e1(t), e2(t), . . . , en(t)) = 0, ei (t) = 0, i = 1, 2, . . . , n, then
F(ei (t)) = 0, i = 1, 2, . . . , n, thus V (e(t)) = 0. And we show V (e(t)) > 0 as e(t) �= 0. 	


In fact, by e(t) �= 0, there exists at least one index i such that ei (t) �= 0. By
the integral mean value theorem,

∫ ei (t)
0 Fi (s)ds = Fi (θi )ei (t), where θi is a num-

ber between 0 and ei (t). From (8), when ei (t) > 0, we get θi > 0, Fi (θi ) ≥ 0,
Fi (θi )ei (t) ≥ 0; When ei (t) < 0, we have θi < 0, Fi (θi ) ≤ 0, Fi (θi )ei (t) ≥ 0.
Thus, we obtain

∫ ei (t)
0 Fi (s)ds ≥ 0, and

∑n
i=1 2Pi

∫ ei (t)
0 Fi (s)ds ≥ 0, e(t) �= 0. Fur-

ther, we will prove that
∑n

i=1 2Pi
∫ ei (t)
0 Fi (s) ds = 0, as e(t) �= 0 does not hold.

Assume that
∑n

i=1 2Pi
∫ ei (t)
0 Fi (s)ds = 0, e(t) �= 0, there must be numbers θi , i =

1, 2, . . . , n that
∑n

i=1 2Pi
∫ ei (t)
0 Fi (s) ds = ∑n

i=1 2Pi Fi (θi )ei (t) = 0, where θi is a
number between 0 and ei (t). Thus, we obtain Fi (θi ) = 0 or ei (t) = 0 for i =
1, 2, . . . , n. When ei (t) = 0, i = 1, 2, . . . , n, we get e(t) = 0, this contradicts with
e(t) �= 0. When Fi (θi ) = 0, i = 1, 2, . . . , n, we have Fi (θi ) = fi (xi + θi ) +
fi (yi ) = 0, i.e. fi (xi + θi ) = − fi (yi ), i = 1, 2, . . . , n. According to Assumption
1, then fi (θi + xi ) is a constant functions for θiε[0, ei (t)] or θiε[ei (t), 0], this contra-
dicts with a nonlinear activation function fi (xi (t)). Thus

∑n
i=1 2Pi

∫ ei (t)
0 Fi (s)ds > 0 as

e(t) �= 0.
That is to say, the first term of V (e(t)) is positive definite. Clearly, the second term of

V (e(t)) ≥ 0. That is V (e(t)) > 0, e(t) �= 0. Thus V (e(t)) is positive definite.
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Via calculating the upper right derivation of V (e(t)) along the trajectory of system (14),
we obtain

D+V (e(t)) = 2
n∑

i=1

Pi Fi (ei (t))ėi (t) +
n∑

i=1

n∑

j=1

rni j
qi j

[
F2
j (e j (t)) − F2

j (e j (qi j t))qi j
]

= 2
n∑

i=1

Pi Fi (ei (t))

[

− ei (t) +
n∑

j=1

ai j (t)Fj (e j (t))

+
n∑

j=1

bi j (t)Fj (e j (qi j t)) − ki ei (t)

]

+
n∑

i=1

n∑

j=1

rni j
qi j

[
Fj (e

2
j (t)) − F2

j (e j (qi j t))qi j
]

= −2FT (e(t))Pe(t) + 2FT (e(t))PA(t)F(e(t))

+2
n∑

i=1

Pi Fi (ei (t))
[
bi1(t), bi2(t), . . . , bin(t)

]
F(e(qi (t)))

−2FT (e(t))PKe(t) + r FT (e(t))Ni Q
−1
i F(e(t))

−r FT (e(qi t))Ni F(e(qi t)), (17)

where
F(e(qi t)) = (

F1(e1(qi1t)), F2(e2(qi2t)), . . . , Fn(en(qint))
)T

,

Q−1
i = diag

(
q−1
i1 , q−1

i2 , . . . , q−1
in

)
, and F(e(t)) = (

F(e1(t)), F(e2(t)), . . . , F(en(t))
)T

,

P = diag(P1, P2, . . . , Pn), A(t) = (ai j (t))n×n .
From the following condition

2
n∑

i=1

Pi Fi (ei (t))
[
bi1, bi2, . . . , bin

]
F(e(qi t))

= 2
n∑

i=1

FT (e(t))PWi F(e(qi t))

≤ r−1FT (e(t))

(
n∑

i=1

PWi N
−1
i W T

i P

)

F(e(t)) + r
n∑

i=1

FT (
e(qi t))Ni F(e(qi t)

)
. (18)

Substituting (18) into (17) yields

D+V (e(t)) ≤ −2FT (e(t))Pe(t) − 2FT (e(t))PKe(t)

+2FT (e(t))P ĀF(e(t))

+r−1FT (e(t))

(
n∑

i=1

PWi N
−1
i W T

i P

)

F(e(t))

+r
n∑

i=1

FT (e(qi t))Ni F(e(qi t))

+r
n∑

i=1

FT (e(t))Ni Q
−1
i F(e(t))
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−r
n∑

i=1

FT (e(qi t))Ni F(e(qi t))

= −2FT (e(t))Pe(t) − 2FT (e(t))PKe(t)

+ 2FT (e(t))PAF(e(t))FT (e(t))

[

r−1
n∑

i=1

PWi N
−1
i W T

i P +
n∑

i=1

r Ni Q
−1
i

]

F(e(t))

+ 2FT (e(t))PL−1F(e(t)) − 2FT (e(t))PL−1F(e(t)). (19)

From Assumption 1, we obtain

−
n∑

i=1

Li ei (t)Fi (ei (t)) ≤ −
n∑

i=1

F2
i (ei (t)), (20)

that is

− 2FT (e(t))e(t) ≤ −2FT (e(t))L−1F(e(t)). (21)

Thus we have

− 2FT (e(t))Pe(t) + 2FT (e(t))PL−1F(e(t)) ≤ 0, (22)

and

− 2FT (e(t))PKe(t) + 2FT (e(t))PK L−1F(e(t)) ≤ 0, (23)

Let F(e(t)) �= 0, which implies that e(t) �= 0. From (19)–(23), we get

D+V (e(t)) ≤ FT (e(t))

[

− 2PL−1 − 2PK L−1 + P Ā + ĀT P

+r−1
n∑

i=1

PWi N
−1
i W−1

i P + r Ni Q
−1
i

]

F(e(t)). (24)

Thus, if (12) holds, then D+V (e(t)) ≤ 0.
Consider the case where F(e(t)) = 0 and e(t) �= 0, then we have

D+V (e(t)) = −
n∑

i=1

n∑

j=1

rni j F
2
j (e j (qi j t))

= −
n∑

i=1

r Ni F
T (e(qi t))F(e(qi t)), (25)

if there exist at least one index i such that F(e(qi t)) �= 0. We obtain D+V (e(t)) < 0.
Assume that F(e(qi t)) = 0 for all i . Since F(e(qi t)) = (F1(e(qi1t)), F2(e(qi2t)), . . . ,

Fn(e(qint)))
T , we get Fj (e j (qi j t)) = 0, i, j = 1, 2, . . . , n, i.e. Fj (e j (qi j t)) =

f j (x j (qi j t)) + f j (y j (qi j t)) = 0, so f j (x j (qi j t)) = − f j (y j (qi j t)). Because function fi
is an odd function, we get x j (qi j t) = −y j (qi j t), so

e j (qi j t) = 0, i, j = 1, 2, . . . , n. (26)

By e(t) �= 0, we have e(qi t) �= 0, there exist one index j such that e j (qi j t) �= 0, so this
contradict with (26). Thus, we have proven that D+V (e(t)) for every e(t) �= 0.

123



Anti-synchronization Control of Memristive Neural Networks... 277

Next, we let e(t) = 0 which implies that F(e(t)) = 0, then

D+V (e(t)) = −
n∑

i=1

n∑

j=1

rni j F
2
j (e j (qi j t))

= −r
n∑

i=1

FT (e(qi t))Ni F(e(qi t)). (27)

If there exist one index i such that F(e(qi t)) �= 0, so we get D+V (e(t)) < 0. And
D+V (e(t)) = 0 if and only if F(e(qi t)) = 0, i = 1, 2, . . . , n. Then D+V (e(t)) is negative
definite.

In the following, we give another synchronization which is a delay-independent one.

Theorem 2 If there exist positive diagonal matrices P = diag{P1, P2, . . . , Pn}, K =
diag{k1, k2, . . . , kn}, Ni = diag{ni1, ni2, . . . , nin} and a constant r > 0, such that the
following inequality holds:

P Ā + ĀT P + r N + r−1PT B̄N−1 B̄ P

−2PDL−1 − 2PK L−1 < 0, (28)

where L = diag(L1, L2, . . . , Ln), Ā = (āi j )n×n, Wi is an n × n square matrix, whose i th
row is composed of (bi1, bi2, . . . , bin) and other rows are all zeros, i, j = 1, 2, . . . , n. Then
the error system under the controller ui (t) can be described by

żi (t) = et
{

−zi (t) +
n∑

j=1

ai j (t)Fj (z j (t)) +
n∑

j=1

bi j (t)Fj (z j (t − τi j )) + ui (t)

}

, (29)

and

ui (t) = −ki zi (t), i = 1, 2, . . . , n, (30)

then the drive system and the response system get anti-synchronized under the controller
(30).

Proof The system (29) under the controller (30) can be described by

żi (t) = et
{

−zi (t) +
n∑

j=1

ai j (t)Fj (z j (t)) +
n∑

j=1

bi j (t)Fj (z j (t − τi j )) − ki zi (t)

}

, (31)

Consider the following Lyapunov functional:

V (z(t)) = 2
n∑

i=1

e−t Pi

∫ zi (t)

0
Fi (s)ds +

n∑

i=1

n∑

j=1

∫ t

t−τi j

rni j F
2
j (z j (s))ds, (32)

where Pi > 0, ni j > 0, i, j = 1, 2, . . . , n.
Since V (z(t)) ≥ ∑n

i=1
∑n

j=1

∫ t
t−τi j

rni j F2
j z j (s)ds, where

∑n
i=1

∑n
j=1

∫ t
t−τi j

rni j F2
j

z j (s)ds is positive definite, and V (0) ≡ 0, thus V (z(t)) is positive definite. And V (z(t)) ≤
U (z(t)), where

U (z(t)) = 2
n∑

i=1

Pi

∫ zi (t)

0
Fi (s)ds +

n∑

i=1

n∑

j=1

∫ t

t−τi j

rni j F
2
j (z j (s))ds

is positive definite. 	
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We calculate the upper right derivation of V (z(t)) along the trajectories of system (31)

D+V (z(t)) = −2
n∑

i=1

e−t Pi

∫ zi (t)

0
Fi (s)ds

+2
n∑

i=1

e−t Pi Fi (zi (t))żi (t)

+
n∑

i=1

n∑

j=1

ni j r
[
F2
j (z j (t) − F2

j (z j (t − τi j )))
]

≤ 2
n∑

i=1

e−t Pi Fi (zi (t))żi (t)

+
n∑

i=1

n∑

j=1

ni j r
[
F2
j (z j (t) − F2

j (z j (t − τi j )))
]

= 2
n∑

i=1

e−t Pi Fi (zi (t))

{

et
[

− zi (t) +
n∑

j=1

ai j (t)Fj (z j (t))

+
n∑

j=1

bi j (t)Fj (z j (t − τi j )) − ki zi (t)

]}

+
n∑

i=1

n∑

j=1

ni j r
[
F2
j (z j (t)) − F2

j (z j (t − τi j ))
]

≤ −2FT (z(t))Pz(t) + 2FT (z(t))P ĀF(z(t))

+2
n∑

i=1

Pi Fi (zi (t))
[
bi1, bi2, . . . , bin

]

F(z(t − τ i )) − 2FT (z(t))PK z(t)

+
n∑

i=1

[
r FT (z(t))Ni F(z(t)) − r FT (z(t − τ i ))Ni F(z(t − τ i ))

]
, (33)

where F(z(t − τ i )) = (F1(z1(t − τi1)), F2(z2(t − τi2)), . . . , Fn(zn(t − τin))), i, j =
1, 2, . . . , n.

The following condition holds:

2
n∑

i=1

Pi F(zi (t))[bi1, bi2, . . . , bin]F(z(t − τ i ))

= 2
n∑

i=1

FT (z(t))PWi F(t − τ i )

≤ r−1FT (z(t))

(
n∑

i=1

PWi N
−1
i W T

i P

)

F(z(t))

+r
n∑

i=1

FT (z(t − τ i ))Ni F(z(t − τ i )), (34)
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then we get

D+V (z(t)) ≤ −2FT (z(t))Pz(t) − 2FT (z(t))PK z(t)

+2FT (z(t))P ĀF(z(t))

+r−1FT (z(t))

[ n∑

i=1

PWi N
−1
i W T

i P

]

F(z(t))

+r
n∑

i=1

FT (z(t − τ i ))Ni F(z(t − τ i ))

+
n∑

i=1

[r FT (z(t))Ni F(z(t)) − r FT (z(t) − τ i )Ni F(z(t − τ i ))]

≤ FT (z(t))

[

P Ā + ĀT P +
n∑

i=1

(r Ni + r−1PWi N
−1
i W T

i P)

−2PL−1 − 2PK L−1
]

F(z(t)). (35)

If P Ā+ ĀT P+∑n
i=1

(
r Ni +r−1PWi N

−1
i W T

i P
)−2PL−1−2PK L−1 < 0, then similar

to the proof of Theorem 1, we get D+V (z(t)) < 0 for any z(t) �= 0. And D+V (z(t)) = 0 if
and only if z(t) = F(z(t)) = F(z(t − τ i )) = 0, i = 1, 2, . . . , n.

4 Illustrative Example

In this section, two numerical examples are given to illustrate the effectiveness of the results
obtained above.

Example 1 We consider a two-dimensional memristive neural network as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ė1(t) = −e1(t) + a11(e1(t))F(e1(t))

+a12(e1(t))F(e2(t)) + b11(e1(t))F(e1(q11t))

+b12(e1(t))F(e2(q12t)) − k1e1(t),

ė2(t) = −e1(t) + a21(e2(t))F(e1(t))

+a22(e2(t))F(e2(t)) + b21(e2(t))F(e1(q21t))

+b22(e2(t))F(e2(q22t)) − k2e2(t),

(36)

where

a11(e1(t)) =
{
0.6, | e1(t) |≤ 1,
0.8, | e1(t) |> 1,

a12(e1(t)) =
{
0.2, | e1(t) |≤ 1,
0.3, | e1(t) |> 1,

a21(e2(t)) =
{
0.5, | e2(t) |≤ 1,
0.7, | e2(t) |> 1,

a22(e2(t)) =
{
0.1, | e2(t) |≤ 1,
0.3, | e2(t) |> 1,

b11(e1(t)) =
{
0.3, | e1(t) |≤ 1,
0.5, | e1(t) |> 1,
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Fig. 1 (Color online) The error curves e1(t) of system (36) with multi-proportional delays and different initial
values

b12(e1(t)) =
{
0.8, | e1(t) |≤ 1,
1, | e1(t) |> 1,

b21(e2(t)) =
{
0.4, | e2(t) |≤ 1,
0.5, | e2(t) |> 1,

b22(e2(t)) =
{
0.1, | e2(t) |≤ 1,
0.2, | e2(t) |> 1.

We take the activation function as: f (ei (t)) = 1
2

( | ei (t) + 1 | − | ei (t) − 1 | )
. Obviously,

f (ei (t)) is odd, bounded and a Lipschitz continuous function with the Lipschitz constants
L1 = L2 = 0.1, and r = 1.

And

Q =
(
0.2 0.4
0.4 0.2

)

, Ā =
(
0.8 0.3
0.7 0.3

)

.

B̄ =
(
0.5 1
0.5 0.2

)

, K =
(
1 0
0 1

)

We choose

P =
(
5 0
0 5

)

, N =
(
1 0
0 1

)

.

Thenwe get−2PL−1−2PK L−1+P Ā+ ĀT P+r−1 ∑n
i=1 PWi N

−1
i W−1

i P+r Ni Q
−1
i < 0

which satisfy the condition of Theorem 1. Choose randomly two initial conditions for e1(t)
and e2(t). The simulation results are depicted in Figs. 1 and 2, which show the evolutions of
the errors e1(t), e2(t) for the controlled system (36) in Example 1. So the simulation results
have confirmed the effectiveness of Theorem 1.
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Fig. 2 (Color online) The error curves e2(t) of system (36) with multi-proportional delays and different initial
values
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Fig. 3 (Color online) The curves z1(t) of system (37) with constant delay τi j = 0.5 and different initial
values

Example 2 In order to illustrate Theorem 2, we consider the following two-dimensional
memristive neural network

żi (t) = et
{

− zi (t) +
2∑

j=1

ai j (t)Fj (z j (t)) +
2∑

j=1

bi j (t)Fj (z j (t − τi j ))

}

, (37)

where τi j = 0.5, r = 1, and the other parameters are the same as those in Example 1. We
verified that P Ā+ ĀT P+r N+r−1PT B̄N−1 B̄ P−2PDL−1−2PK L−1 < 0, which satisfy
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Fig. 4 (Color online) The error curves z2(t) of system (37) with constant delay τi j = 0.5 and different initial
values

the condition of Theorem 2. From Figs. 3 and 4, we see that the curves become convergent
which shows the effectiveness of Theorem 2 and the drive system and the response system
get anti-synchronized.

5 Conclusion

In this paper, we adopted the differential inclusion theory to handle memristive neural net-
works withmultiple proportional delays. In particular, new sufficient conditions were derived
for the anti-synchronization control ofmemristive neural networkswithmultiple proportional
delays, whichwas different from the existing ones and also complement, aswell as, extend the
earlier publications. Finally, two numerical exampleswere given to illustrate the effectiveness
of the proposed results.
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